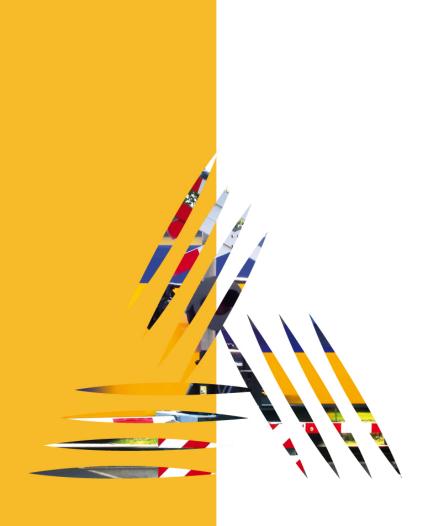
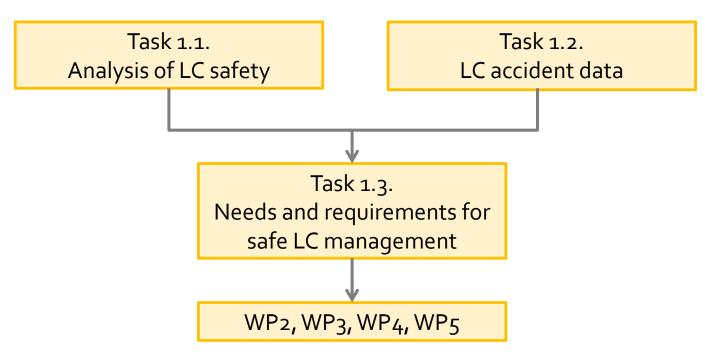


MANAGEMENT AND DESIGN


SAFER-LCWP1

LCs in Europe and beyond: Rail and road safety management requirements

Anne Silla, VTT


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No 723205

Overall objective

- To provide requirements and recommendations to be considered in further stages of the SAFER-LC project
 - Needs and requirements for improving LC safety available for WP3
 - Defining selected scenarios to be tested and evaluated in WP4

SAFER-LC workshop, Madrid, 5 February 2020

Analysis of LC safety in Europe and beyond (Task 1.1)

▲ Objective: To identify differences in LC environments between countries in relation to the following aspects:

- ▲ LC safety arrangements
- ▲ LC legislation
- Division of responsibilities between stakeholders involved in LC safety
- ▲ User requirements for safe access and use of LC
- ▲ LC safety arrangements
- Examples of good practice and innovations related to LC arrangements

Analysis of LC safety in Europe and beyond

Method

- ▲ A questionnaire (*Country Information Collection Form*) designed to collect information on different aspects of LC safety
- Data collection: project partners and UIC collaborators

▲ Information was received from twenty-four countries

- Partner countries (n=8): Belgium, Finland, France, Greece, Italy, Norway, Spain, Turkey
- Other European countries (n=15): Albania, Austria, Ireland, Latvia, Lithuania, Macedonia, Montenegro, Netherlands, Romania, Russia, Serbia, Slovak Republic, Sweden, Switzerland, United Kingdom
- ▲ Beyond (n=1): Canada

Main results (1/2)

- ▲ LC safety arrangements: Do not differ greatly; a common trend to increase active (automatic) forms of protection
- Decisions are made based on a combined set of criteria: Volume of road and rail traffic, and maximum train speed; Local circumstances
- Additional safety arrangement: Physical and technological measures such as cameras, rubber panels and warning lights; Public awareness and educational measures
- LC safety policy: LC removal as primary policy, followed by improved protection

Main results (2/2)

- LC legislation: A greater level of harmonisation with road side rules than those applied specifically to the operation and management of LCs
- Division of responsibilities: Need to balance the interest of different parties involved; Main responsibility is held by the rail infrastructure manager
- User requirements: Strong focus on education and awareness raising actions; Research-based action
- Best practices on LC safety: Twenty case studies and/or project results were reported

Challenges and proposals to achieving LC safety

Challenges	Proposals
Cross-agency working	Work towards creating a shared vision and commitment to LC safety
Political interest to address investment and long-term support of LC safety programmes	Identify and draw on successful experiences of gaining political commitment to LC safety . Highlight problems to be addressed using critical safety statistics and data.
Cost and complexity of LC safety improvements	Apply data fed risk management models to inform decisions regarding safety at specific LCs
Technical limitations of LC protection	Identify examples of low cost high impact safety solutions that have been succesfully implemented
Human factors (public acceptance, LC misuse, design of forgiving infrastructures)	Research into human factors at LCs; Identify examples of successful community involvement in similar initiatives

SAFER-LC workshop, Madrid, 5 February 2020

Typical factors behind LC accidents (Task 1.2)

▲ Objective: To produce an in-depth review of LC accident data

- Method
 - The in-depth review covered railway accident databases from seven countries, namely Greece, Finland, France, Italy, Norway, Spain and Turkey
 - The involved partners were responsible for collecting the data from relevant sources in their country
 - The main data sources were accident investigation reports from railway operators and national accident investigation bodies

	Title	Variable	Country							
		Valiable	Greece	Finland	France	Italy	Norway	Spain	Γ	
	Collision	Outcome	Х	Х	Х	X	X	Х	Γ	
by country	Completi	Type of road vehicle	Х	Х	Х	Х	Х	Х		
		Month	Х	Х	Х	Х	X	Х	Γ	
		Day of the week	Х	Х	Х	Х	Х	Х	Γ	
		Hour	Х	Х	Х	Х	Х	Х	Γ	
		Year	Х	Х	Х	Х	Х	Х	Γ	
	Victim	Type of victim	Х	Х	Х	Х	Х	Х	Γ	
n few cases		Type of road user	Х	Х	Х	Х	NA	NA	Γ	
		Outcome	Х	Х	Х	Х	Х	NA	Γ	
		Gender	(X)	Х	Х	(X)	NA	NA	Γ	
		Age	NA	Х	Х	X	NA	NA	Γ	
		Intentionality	(X)	Х	NA	Х	Х	NA	Γ	
		Involvement in secondary tasks	NÁ	Х	NA	Х	NA	NA	Γ	
		Intoxication	(X)	Х	(X)	(X)	NA	NA	Γ	
	Road environment	Road traffic volume (AADT)	X	Х	X	X	Х	NA	Γ	
		Type of road	Х	Х	Х	Х	Х	Х	Г	
		Road speed limit	Х	Х	Х	Х	Х	NA	Γ	
		Number of lanes per direction	Х	Х	NA	Х	Х	NA	Γ	
		Type or road surface	Х	Х	NA	Х	Х	Х	Г	
		Existence of level crossing sign before LC	Х	Х	NA	Х	Х	(X)	Γ	
		Inclination	Х	Х	NA	Х	Х	NA	Γ	
		Crossing angle (between road and track)	Х	Х	Х	Х	X	NA	Γ	
	Railway environment	Daily train volume (passenger + freight)	Х	Х	Х	Х	Х	Х	Γ	
		Speed limit for person trains (km/h)	Х	Х	Х	Х	Х	NA		
		Speed limit for freight trains (km/h)	Х	Х	Х	Х	Х	NA		
		Condition of wait platform	Х	Х	NA	Х	NA	Х	-	
		Number of tracks	Х	Х	Х	Х	Х	Х	-	
	LC characteristics	Type of LC	Х	Х	Х	Х	Х	Х		
		Location of LC	Х	NA	Х	Х	Х	Х		
		Sight distances (from the road)	NA	Х	NA	Х	Х	NA		
	Circumstances	Weather	(X)	Х	(X)	Х	NA	NA		
		Lighting conditions	(X)	Х	NA	Х	NA	NA		
	Train	Train	Х	NA	NA	Х	Х	(X)		
	Effect	Delay (number of minutes)	(X)	NA	NA	Х	NA	NA		
		Delay (number of trains cancelled)	NÁ	NA	NA	NA	NA	NA	ſ	
		Costs (euros)	NA	NA	NA	Х	NA	NA		
	Main factors affecting the accident		X	NA	X	X	X	NA		

Available variables by country x = Available, (x) = Available only in few cases

NA = Not available

Turkey X X

X X

X X

X X X

Х Х Х (X) Х

Main findings – LC accidents

- Fairly evenly distributed throughout the year and all days of the week
- ▲ Victims: usually car drivers and pedestrians, and typically local inhabitants
- ▲ A large share occurred in areas where the road speed limit was rather low
- Some main factors contributing to LC accidents were breakdown of the car at the LC, car violating the barriers, non-observation of road signage, distraction, and limited visibility due to glare from the sun
- ▲ Analysis highlighted the differences between railway environments
 - ▲ High share of LC accidents at active LCs in Italy (92%), France (86%) and Greece (73%)
 - France, Italy and Spain: Somewhat higher train traffic volumes at LCs with accidents compared to other countries
 - France: 24% of accidents occur at LCs where road traffic volume is higher than 5 ooo road vehicles per day

Conclusions

- The coverage of victim details varied between countries and in several cases they are missing
- The exploitation of in-depth LC accident data is not possible if the data is not available to the interested organisations
- ▲ The yearly number of fatalities and serious injuries did not perfectly match with the number of cases reported to the ERA database

▲ Added value:

- Information on accidents causing light injuries and property damage only
- Information on wide variety of variables

SAFER-LC workshop, Madrid, 5 February 2020

Needs and requirements for safe LC management (Task 1.3)

Objective: To produce a list of needs and requirements which should be satisfied by LCs both during normal operations and degraded modes

Method

- ▲ Literature review (findings from earlier tasks and the SafeRail project)
- ▲ In-depth interviews with experts
- Workshop on end-user requirements. Around 40 questionnaires on risks at level crossing and innovative solutions were collected.

Main findings

▲ Legal, organizational and technical requirements: International cooperation; Need of a harmonized accident database

Identified risks

- ▲ Human factors: distraction, inattentiveness, speeding, rule violation
- ▲ LC: location, profile, visibility
- A Railway operation: vehicle stuck, long closure time, failures
- Innovative solutions: Inform road users, risk monitoring, object recognition, predictive maintenance

Proposed scenarios

Risk assessment: Automatic video data analysis; identification of risky behaviours

- Smart Detection system: Identification of risks at LC; information sharing with relevant parties
- Surveillance of the road and rail surface: Early detection of failures on the LCs
- ▲ Optimised closure time of the barrier: Based on the location and speed of the train

Communication systems: Information sharing

Main outputs of WP1

▲ Information on LC safety in different countries

- ▲ More insights into LC accidents, and risks at LCs
- ▲ Information on best practices, and (innovative) safety solutions
- > Input for further development of scenarios in WP3
- Input for the estimation of safety potential of piloted measures in WP4

Thank you

Questions?

