SAFER-LC WORKSHOP 2 Tuesday 27 March 2018





"The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723205"

# Level Crossing Research at NURail Universities

#### **Reginald R. Souleyrette** Professor and Chair Department of Civil Engineering, Univ. of KY





Slide 1

## **The NURail Center**

The National University Rail (NURail) Center is a consortium of seven partner colleges and universities offering an unparalleled combination of strengths in railway transportation engineering research and education in North America.







# **Highway-Rail Grade Crossings**

- Over 200,000 level crossings in the US alone
- Hundreds of fatal accidents
- Rough crossings result in delays, vehicle damage, discomfort
- Huge maintenance issue for RR and DOT alike





# **Outline of This Presentation**

Michiganiech

INIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

NOIS

UIC

OF ILLINOIS AT CHICAGO

IK

KENTUCKY

- Work of 4 NURail universities (9 projects)
- Common goal of improving safety
- Three general themes
  - human factors
  - risk analysis
  - infrastructure assessment







#### Papers are available for all projects



#### Contact the speaker at Souleyrette@uky.edu







# #1 In-Vehicle Alerts; How Best to Warn Drivers?

#### Stimuli

#### 31 novel auditory cues

#### Subjective Measurements

7 psychological dimensions

- 9 Earcons (Beeps)
  - Varied in pitch, pulse rate, wave shape, etc.
- 6 Auditory Icons (train sounds)
  - Train horns, "track" sounds, warning bells, etc.
- 16 Verbal messages
  - 2 Genders (M, F)
  - 2 Voice types (Human, TTS)
  - 4 words (Alert, Caution, Danger, Warning)

- Likert scale 1-7
  - Overall Appropriateness
  - Urgency
  - Meaning
  - Discriminability
  - Annoyance
  - Startle effect
  - Natural-In-Car

Baldwin & Lewis, 2014







#### **Experimental Design**



22 minute loop, train present at 23<sup>rd</sup> crossing (gate)





**NURail Center** 



# Evaluation Auditory Warnings using Driver Simulator

# **Compliance coding scheme**

- + 1 for each direction looked (max 2)
- + 1 for coasting (releasing accelerator pedal)
- + 1 for slowing down (press on brake pedal)
- 1 for not coming to a complete stop (if STOP sign)





**Results** 

Principal Component Analysis suggested two main factors (95% of variance explained across all 7 dimensions)

"Utility" – meaning & natural & urgency "Impulsivity" – annoying & startle



Impulsivity



temieth

Slide 9



#### **Significance of Results**



Slide 10

#1 Warning

Human





# **#2 Integration of Driver Simulator and NDS Data**

- SHRP2-NDS (Naturalistic Driving Study)
  - Data were live recorded in-vehicle
  - Behavior very similar to the natural environment
  - Expensive and difficult to set up
  - Data collected between 2011 and 2013
  - 3,500 Vehicles in 6 Regions: FL, IN, NY, NC, PA, WA
  - More than five million trips and over 1,000 crossings involved
  - Data used to analyze driver behavior at grade crossings, *primarily* in non-accident situations







#### **Data analysis**









# **Scores - Crossing Type**

- Clusters are based on :
  - Traffic control devices (passive, active w/ lights, active w/ lights&gates)
  - Angle of the crossing
  - Total trains per day
  - Highway maximum speed



 Scanning vs. speed reduction behavior offers similar trending with all main TCDs







## **Correlation analysis**

Compliance score vs Total Trains Per Day



- Initial results show drivers display more compliant behaviors as the number of trains per day increases
- More data are needed in some of the clusters to reach a 90% confidence with 5% standard error



64

44

36

30







- Simulate a variety of observed sites
- Calibrate driver simulator with NDS data
- Provide warnings in similar circumstances to test improvement







# **Application**

## Auditory warning of approaching crossing...

- Requires GPS + crossing location database
- No vehicle-train communication necessary (not "Active" from the RR perspective)
- Increases saliency, especially at passive crossings
- Reminds drivers to comply (and *how to* comply)





# #3 Grade Crossing Pedestrian Safety



- Interviews with experts
  - Lower priority unless adjacent to highway crossing
  - Lack of tools, cost data, uniformity
  - Distraction the big problem
- Survey of users
  - Younger users notice active, old notice passive
  - Regular users & females more safety conscious
- Video
  - Larger groups more likely to violate









## Quantitative Analysis of Train Derailments Due to Highway-Rail Grade Crossing Incidents









#### **Probabilistic Risk Assessment**







# **Key Findings**

- Speed and weight of highway and rail vehicles important
- Regression models calculate probability of derailment based on physical factors
- Easy-to-use calculator for use by practitioners (ranking tool)









**NURail Center** 

# **Key Findings (cont)**

- Case study on how results can be used with existing metrics
- Combining consequence data, incident likelihood, derailment likelihood helps decide <u>which crossings to</u> <u>upgrade</u>

|          | Warning   | Highway | Pax    | All    | Timetable | Track | Expected              | l Value  | 95th Per             | centile | WBAPS P | rediction | p(D I) <sub>e</sub> , | <sub>տ</sub> *f(I) | p(D l) <sub>9</sub> | 5*f(l) |
|----------|-----------|---------|--------|--------|-----------|-------|-----------------------|----------|----------------------|---------|---------|-----------|-----------------------|--------------------|---------------------|--------|
| Crossing | Device    | Class   | Trains | Trains | Speed     | Class | p(D I) <sub>exp</sub> | Rank     | p(D l) <sub>95</sub> | Rank    | f(l)    | Rank      | f(D) <sub>exp</sub>   | Rank               | f(D) <sub>95</sub>  | Rank   |
| 4U       | O. Active | UA      | 0      | 2      | 30        | 3     | 0.03689               | 1        | 0.22442              | 1       | 0.02110 | 4         | 0.00078               | 3                  | 0.00473             | 3      |
| 4V       | Passive   | UL      | 0      | 2      | 30        | 3     | 0.03373               | 2        | 0.19140              | 4       | 0.00252 | 22        | 0.00009               | 23                 | 0.00048             | 23     |
| 4W       | Passive   | UL      | 0      | 2      | 30        | 3     | 0.03373               | 2        | 0.19140              | 4       | 0.04836 | 2         | 0.00163               | 1                  | 0.00926             | 2      |
| 4T       | O. Active | UC      | 0      | 2      | 30        | 3     | 0.03348               | 3        | 0.19416              | 3       | 0.00877 | 16        | 0.00029               | 9                  | 0.00170             | 12     |
| 4K       | O. Active | UA      | 0      | 4      | 10        | 1     | 0.02570               | 4        | 0.19882              | 2       | 0.01293 | 9         | 0.00033               | 6                  | 0.00257             | 7      |
| 4N       | O. Active | UA      | 0      | 4      | 10        | 1     | 0.02570               | 4        | 0.19882              | 2       | 0.02149 | 3         | 0.00055               | 4                  | 0.00427             | 4      |
| 4R       | O. Active | UA      | 0      | 4      | 10        | 1     | 0.02570               | 4        | 0.19882              | 2       | 0.02092 | 5         | 0.00054               | 5                  | 0.00416             | 5      |
| 4S       | O. Active | UA      | 0      | 4      | 10        | 1     | 0.02570               | 4        | 0.19882              | 2       | 0.05827 | 1         | 0.00150               | 2                  | 0.01158             | 1      |
| 4C       | O. Active | UC      | 0      | 4      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.00671 | 19        | 0.00015               | 20                 | 0.00108             | 20     |
| 4E       | O. Active | UC      | 0      | 6      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.01311 | 8         | 0.00029               | 10                 | 0.00211             | 9      |
| 4F       | O. Active | UC      | 0      | 4      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.00898 | 15        | 0.00020               | 17                 | 0.00144             | 17     |
| 4H       | O. Active | UC      | 0      | 4      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.01011 | 12        | 0.00023               | 13                 | 0.00163             | 13     |
| 41       | O. Active | UC      | 0      | 4      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.00962 | 14        | 0.00021               | 15                 | 0.00155             | 15     |
| 40       | O. Active | UC      | 0      | 4      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.01270 | 10        | 0.00028               | 11                 | 0.00204             | 10     |
| 4P       | O. Active | UC      | 0      | 4      | 10        | 1     | 0.02230               | 5        | 0.16090              | 5       | 0.01201 | 11        | 0.00027               | 12                 | 0.00193             | 11     |
| 4A       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.01003 | 13        | 0.00022               | 14                 | 0.00156             | 14     |
| 4B       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.01440 | 7         | 0.00031               | 8                  | 0.00223             | 8      |
| 4G       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.00773 | 18        | 0.00017               | 19                 | 0.00120             | 19     |
| 4J       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.00589 | 21        | 0.00013               | 22                 | 0.00091             | 22     |
| 4L       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.00630 | 20        | 0.00014               | 21                 | 0.00098             | 21     |
| 4M       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.00823 | 17        | 0.00018               | 18                 | 0.00128             | 18     |
| 4Q       | O. Active | UL      | 0      | 4      | 10        | 1     | 0.02154               | 6        | 0.15518              | 6       | 0.00962 | 14        | 0.00021               | 16                 | 0.00149             | 16     |
| 4D       | Gates     | UA      | 0      | 4      | 10        | 1     | 0.01666               | 7        | 0.14098              | 7       | 0.01983 | 6         | 0.00033               | 7                  | 0.00280             | 6      |
|          |           |         |        |        |           |       | Corridor              | 4 Incide | nt Total:            | f(l)    | 0.34961 | f(D)exp   | 0.00901               | f(D) <sub>95</sub> | 0.06299             |        |







# Combination of Micro and Macro Models for Risk Assessment

- **Macroscopic** models derived from entire state or country
  - Correlation between crossing characteristics and past accident frequency
  - E.g., **US DOT** Accident Prediction Formula.
- Microscopic perspective: individual characteristics of accidents and crossings
  - Discover local trends
- Combined micro and macro model development
  - Compared results to US DOT APF





# **Quantifying Condition**



**NURail Center** 





Slide 23



#### **Structured-light Sensor**

















#### **Accelerometer Application**









#### Sensitivity of Crossing Ranking using RMS of Various Vehicles

| Crossing          | Posted<br>Speed | Ave.<br>RMS | Rank<br>based on<br>Ave. RMS | Rank<br>based on<br>F150 | Rank<br>based on<br>IMPALA | Rank<br>based on<br>JEEP | Rank<br>based on<br>HONDA | Rank<br>based on<br>TOYOTA | Rank<br>based on<br>BMW |
|-------------------|-----------------|-------------|------------------------------|--------------------------|----------------------------|--------------------------|---------------------------|----------------------------|-------------------------|
| Bryan Station     | 30              | 0.67        | 5                            | 5                        | 5                          | 4                        | 4                         | 5                          | 5                       |
| Briar Hill        | 35              | 1.74        | 1                            | 1                        | 1                          | 1                        | 1                         | 1                          | 1                       |
| Hatton            | 20              | 0.99        | 3                            | 3                        | 3                          | 3                        | 3                         | 2                          | 3                       |
| Bridgeport-Benson | 25              | 1.09        | 2                            | 2                        | 2                          | 2                        | 2                         | 3                          | 2                       |
| Devil's Hollow    | 35              | 0.71        | 4                            | 4                        | 4                          | 5                        | 5                         | 4                          | 4                       |

## Performance



KENTUCKY



Do we need

to go to the

field?

# **A Vehicle Dynamic Model**



OF ILLINOIS AT CHICAGO



Time (sec)



**NURail Center** 

Physical model

Slide 26



# **Rail Crossing Condition Index**



**NURail Center** 





$$S_{a} = \frac{1}{MN} \sum_{j=1}^{N} \sum_{i=1}^{M} |z(x_{i}, y_{j})| \qquad S_{q} = \sqrt{\frac{1}{MN} \sum_{j=1}^{N} \sum_{i=1}^{M} z^{2}(x_{i}, y_{j})}$$





#### Can we separate the effects of original design from effects of poor surface condition?









#### Can we separate the effects of original design from effects of poor surface condition?



current surface — As-built surface





NURail Center





#### **Hump Crossings**









Figure.9 Car Carrier Trailer pass KY-57 Briar Hill Army Depot











|              | KY-57 Bryan Station (A) |                       |                      | Brannon Ro    | d (B)                 |                      | KY-57 Briar   | iar Hill Army Depot (C) |                      |  |
|--------------|-------------------------|-----------------------|----------------------|---------------|-----------------------|----------------------|---------------|-------------------------|----------------------|--|
| Veh.<br>type | Wheel<br>base           | Front<br>Over<br>hang | Rear<br>Over<br>hang | Wheel<br>base | Front<br>Over<br>hang | Rear<br>Over<br>hang | Wheel<br>base | Front<br>Over<br>hang   | Rear<br>Over<br>hang |  |
| 1            | L1                      | -                     | L1.                  | L1            | -                     | L1                   | L1.           | -                       | L1                   |  |
| 2            | L1                      | L1                    | L1                   | L1            | L1                    | L5                   | L1            | L1                      | L1                   |  |
| 3            | L1                      | L1                    | L1                   | L2            | L3                    | L4                   | L1            | L1                      | L1                   |  |
| 4            | L1                      | -                     | L1                   | L2            | -                     | L3                   | L1            | -                       | L1                   |  |
| 5            | L3                      | -                     | -                    | L5            | -                     | -                    | L4            | -                       | -                    |  |
| 6            | L4                      | -                     | L1                   | L5            | -                     | L5                   | L5            | -                       | L3                   |  |
| 7            | L2                      | -                     | -                    | L4            | -                     | -                    | L2            | -                       | -                    |  |





Level 1:  $\delta_{min} > 2$  inch

Level 2:  $2 \operatorname{inch} \geq \delta_{\min} > 0 \operatorname{inch}$ Level 3:  $0 \operatorname{inch} \geq \delta_{\min} > -1 \operatorname{inch}$ Level 4:  $-1 \operatorname{inch} \geq \delta_{\min} > -2 \operatorname{inch}$ Level 5:  $\delta_{\min} \leq -2 \operatorname{inch}$ 



Software Demo Video: <u>https://youtu.be/EwEpXB4Zq2U</u>

NURail Center



🥠 Figure 1 File 🗃 🖬 🍇 🔍

Latitude(ft)

.atitude(ft)

# 3D Rail-highway hump crossing automatic evaluation software result output





|                 | File   | Home Insert        | Draw Page I       | avout Formulas  | : Data Review          | View Add-ins     |              |
|-----------------|--------|--------------------|-------------------|-----------------|------------------------|------------------|--------------|
|                 | 1 K    | Cut Caliba         |                   | · ; ≡ = ■ »     |                        | Carrow           |              |
|                 |        | Copy *             | 1 · 11 · A        | A —             | evvrap lext            | General          |              |
|                 | Paste  | Format Painter B I | U • 🗄 • 🙆 • 🛓     | 4 ≡≡≡ €         | 主 🔛 Merge & Center     | - \$ - % • 500 - | 00 Condition |
|                 | Clind  | board 5            | Font              | 5               | Alignment              | 5 Number         | Formattin    |
|                 | Cipi   | bound              | TOIL              |                 | Alighment              | TA HUMBER        |              |
| _ 0             | × A2   | • : ×              | ✓ fx 4.97         | 3               |                        |                  |              |
| 1 Style Marriel |        | ٨                  | R                 | C               | D                      | F                | 6            |
|                 | 1 Road | Surf Longitudinal  | Road Surf Lateral | Contact Index C | ar Base Longitudinal ( | °ar Base Lateral |              |
|                 | 2      | 4 973              | یاری -2 78۶       | 0.050603947     | 0 127                  |                  |              |
|                 | 3      | 7.513              | -2.918            | 0.05060301      | 8.001                  | 0.13             |              |
| face            | 4      | -24.872            | -2.658            | 0.05059141      | 0                      | 0.39             |              |
|                 | 5      | -14.498            | 2.918             | 0.050548678     | 11.303                 | 0                |              |
|                 | 6      | -14.498            | 2.918             | 0.050428728     | 11.557                 | 0.13             |              |
| U               | 7      | 7.513              | -2.918            | 0.049546246     | 8.001                  | 0                |              |
| 2               | 8      | 4.973              | -2.918            | 0.049066676     | 0.127                  | 0                |              |
|                 | 9      | 8.529              | -0.188            | 0.048656385     | 8.636                  | 2.6              |              |
| -4              | 10     | 8.529              | -0.188            | 0.048290749     | 8.509                  | 2.6              |              |
|                 | 11     | -4.846             | 2.398             | 0.048131177     | 0                      | 0.39             |              |
| -6              | 12     | -23.475            | -2.658            | 0.048118439     | 0                      | 0.39             |              |
|                 | 13     | -5.735             | 0.318             | 0.048077325     | 7.747                  | 2.6              |              |
| 50 100 150      | 14     | -23.983            | -2.658            | 0.047961646     | 0.127                  | 0.39             |              |
|                 | 15     | -6.116             | 2.528             | 0.047760134     | 0.254                  | 0.26             |              |
| 1               | 16     | -23.221            | -2.658            | 0.047712527     | 0                      | 0.39             |              |
|                 | 17     | -23.602            | -2.658            | 0.047702935     | 0                      | 0.39             |              |
|                 | 18     | -7.005             | 2.398             | 0.047617553     | 0                      | 0.39             |              |
|                 | 19     | -6.584             | -0.448            | 0.047566416     | 12.065                 | 2.6              |              |
|                 | 20     | -23.729            | -2.658            | 0.04756486      | 0                      | 0.39             |              |
| ····            | 21     | -6.116             | 2.528             | 0.047278892     | 0.508                  | 0.26             |              |
| -4              | 22     | -14.498            | 2.918             | 0.047151711     | 11.43                  | 0                |              |
|                 | 23     | -6.116             | 1.098             | 0.046818828     | 8.001                  | 1.69             |              |
|                 | 24     | -24.999            | -2.658            | 0.046768698     | 0                      | 0.39             |              |
|                 | 25     | 4.973              | -2.788            | 0.046671245     | 0                      | 0                |              |
| 40 50           | 26     | -5.862             | 0.448             | 0.046604578     | 7.874                  | 2.6              |              |
|                 | 27     | -6.116             | 1.098             | 0.045925356     | 8.255                  | 1.95             |              |
|                 | 28     | 8.529              | -0.188            | 0.045414963     | 8.763                  | 2.6              |              |
|                 | 29     | 7.513              | -2.918            | 0.044494299     | 8.128                  | 0                |              |
|                 | 30     | -23.856            | -2.658            | 0.044337768     | 0                      | 0.39             |              |
|                 | 31     | -6.116             | 1.098             | 0.044262588     | 8.128                  | 1.69             |              |
|                 | 32     | -14.498            | 2.918             | 0.044143409     | 11.303                 | 0.13             |              |

33

**NURail Center** 

0

0.39

-2.658

0.043872367

(+)

-25.126

Brannon Rd 0.05\_Car carrier tra

| Slide 35 |  |  |
|----------|--|--|



# 2D Rail-highway hump crossing automatic evaluation software GUI





**NURail Center** 



Software Demo Video: <u>https://youtu.be/EwEpXB4Zq2U</u>



# 2D Rail-highway hump crossing automatic evaluation software result output







| File       | Home          | Insert    | Draw           | Page Layout    | Formulas      | Dat  |
|------------|---------------|-----------|----------------|----------------|---------------|------|
| <b>*</b> & | Cut           | Calibri   | - 11           | · ĂĂ           | = = **        | -    |
| Paste      | Сору -        | BI        |                | A -            |               | E.S. |
| - *        | Format Painte | r         |                |                |               |      |
| Clip       | oboard        | 2         | Font           | 15             | Align         | mei  |
| E15        | -             | ×         | f <sub>x</sub> |                |               |      |
|            | А             |           |                | в              | с             |      |
| 1 Road     | d Surf Longit | udinal ft | Road Su        | urf Lateral in | Contact Index | in   |
| 2          | -1            | 08.26772  |                | 53.1391746     | 8 5.000002    | 27   |
| 3          | -107          | .8501376  |                | 53.0850247     | 8 4.97914120  | 70   |
| 4          | -107          | .4325551  |                | 52.9101229     | 1 5.00000     | 27   |
| 5          | -107          | .0149727  |                | 52.9333679     | 4.90320768    | 36   |
| 6          | -106          | .5973903  |                | 52.962605      | 4.80042048    | 88   |
| 7          | -106          | .1798078  |                | 52.664630      | 5.00000       | 27   |
| 8          | -105          | .7622254  |                | 52.6528305     | 4.9410941     | 72   |
| 9          | -10           | 5.344643  |                | 52.6604620     | 9 4.86275440  | 70   |
| 10         | -104          | .9270606  |                | 52.4958952     | 4.9566129     | 96   |
| 11         | -104          | .5094781  |                | 52.4097455     | 6 4.9720544:  | 17   |
| 12         | -104          | .0918957  |                | 52.3990687     | 4.9120229     | 55   |
| 13         | -103          | .6743133  |                | 52.376642      | 4.8637406     | 71   |
| 14         | -103          | .2567308  |                | 52.2110189     | 4.95865628    | 37   |
| 15         | -102          | .8391484  |                | 52.1622314     | 4.93673554    | 12   |
| 16         | -10           | 2.421566  |                | 52.0455074     | 4.98201866    | 54   |
| 17         | -102          | .0039835  |                | 51.9769780     | 4.97699804    | 49   |
| 18         | -101          | .5864011  |                | 51.8748749     | 5.00000       | 27   |
| 19         | -101          | .1688187  |                | 51.82869279    | 9 4.97818340  | 05   |
| 20         | -100          | .7512362  |                | 51.8444482     | 4.88887798    | 32   |
| 21         | -100          | .3336538  |                | 51.6026339     | 5 5.00000     | 27   |
| 22         | -99.9         | 91607138  |                | 51.5153403     | 5.00000       | 27   |
| 23         | -99.4         | 19848895  |                | 51.5436839     | 8 4.9142493   | 55   |
| 24         | -99.0         | 08090652  |                | 51.3416888     | 5 5.00000     | 27   |
| 25         | -98.0         | 6332409   |                | 51.2896809     | 5.00000       | 27   |
| 26         | -98.2         | 24574166  |                | 51.1982637     | 5 5.00000     | 27   |
| 27         | -97.8         | 32815923  |                | 51.0964918     | 5 5.00000     | 27   |
| 28         | -97           | .4105768  |                | 50.9913854     | 1 5.00000     | 27   |
| 29         | -96.9         | 9299436   |                | 50.9686954     | 4.97787838    | 89   |
| 30         | -96.5         | 57541193  |                | 50.9479700     | 4.95378962    | 23   |
| 31         | -96           | .1578295  |                | 50.8884476     | 4.96849778    | 32   |
| 32         | -95.3         | 74024707  |                | 50.6999792     | 7 5.00000     | 27   |
| 33         | -95.3         | 32266464  |                | 50,6044144     | 5 00000       | 27   |



#### Thanks:

# SAFER-LC, Elias Kassa, Marie-Hélène Bonneau

- Questions?
  - Souleyrette@uky.edu
- Reports and more information:
  - http://www.nurailcenter.org/

These projects were supported by the National University Rail (NURail) Center a US DOT OST-R University Transportation Center



