

SAFER LEVEL CROSSING BY INTEGRATING AND OPTIMIZING ROAD-RAIL INFRASTRUCTURE MANAGEMENT AND DESIGN

WP5 - Cost- benefit analysis and final recommendations for SAFER-LC

SAFER-LC WS3, FFE, Madrid, 5th of February 2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723205

WP5 - Overview

- **Duration**: $M6 \rightarrow M36$
- Leader: IFSTTAR
- Contributors: All

1	UIC	NTNU	IFSTTAR	CERTH-	Train	GLS	COM	IRU	SNCF
				HIT	ose		М		
	7	4	11	3	5	1	2	10	1

Objectives

- Establish a comprehensive C/B analysis method to assess the developed solutions, while taking into account various aspects:
 - Economical
 - Social
 - Environmental
- Issue a concise set of recommendations pertaining to:
 - Technical specifications
 - Human processes
 - Oraganizational and legal frameworks
 - ==> Implementation of the solutions + Feed into future international standard in rail and road \rightarrow Safer LX

WP5 - Work description

Task 5.1: Harmonised Cost Benefit Analysis approach (M6 – M27)

- Leader: IFSTTAR
- Participants: UIC, CERTH-HIT, TRAINOSE, IRU
 - Investigate Cost Benefit Analysis techniques related to safety in railway sector
 - Suggest a harmonised approach based on the results of WP4

Task 5.2: Business Models for the deployment of the suggested solutions (M8 – M32)

- Leader: IRU
- Participants: CERTH-HIT, IFSTTAR, UIC, TRAINOSE, COMM
 - Evaluate the elaborated solutions by means of business models + consider some case studies to perform the assessment

Task 5.3: Recommendations and guidelines (M24 – M36)

- Leader: UIC
- Participants: NTNU, IFSTTAR, TRAINOSE, CERTH-HIT, COMM, SNCF, GLS, IRU
 - Provide a synthesis of the SAFER-LC recommendations on technical specifications, human processes, and on the organizational and legal framework regarding the deployment of the developed solutions => Meet the latest cooperative standards on technical specifications and human processes, but also on the organizational and legal framework

WP5 - Deliverables

- D5.1. Adopted cost-benefit analysis approach IFSTTAR
- D5.2. Proposal of standards for data interoperability and communication – NTNU
- D5.3. Business models for safer LC innovative solutions IRU
- D5.4. Recommendations for national policy and regulations regarding the LC from the infrastructure point of view UIC

Developing a harmonized Cost-Benefit Analysis method

Developing a harmonized Cost-Benefit Analysis method (1)

CBA - Definition

A systematic process for calculating and comparing the benefits and costs of several projects/criteria/decisions or government policy.

• Purpose

- To determine if it is a judicious investment/decision (justification/ feasibility)
- To provide a reference for comparing projects / criteria / decisions
- ==> offering a basis for a rational decision-making

Developing a harmonized Cost-Benefit Analysis method (2)

• In practice

 comparing the total expected cost of each option against the total expected benefits: do the benefits outweigh the costs, and by how much?

 $CBR = \frac{\Sigma \text{ benefits}}{\Sigma \text{ costs}}$

• Aim

- Identifying alternatives
- Defining alternatives in a way that allows fair comparison.
- Adjusting for occurrence of costs and benefits at different times.
- Calculating monetary values for items that are not usually expressed in money.
- Coping with uncertainty in the data.
- Summing up a complex pattern of costs and benefits to guide decision-making.

Developing a harmonized Cost-Benefit Analysis method (3)

• Approach

- State of the art regarding C/B analysis, particularly in railways
 Analysis of relevant projects
- Comparison Cost-benefit Analysis (CBA) vs. Cost-Benefit Effectiveness (CBE): adequacy/relevance to our context
- Investigation of the economic aspects of safety at LXs
 - Investigation of all the cost and benefit types w.r.t. LX safety
- Identification of relevant indicators: NPV, IRR, CBR
- A questionnaire based survey regarding CBA
- Proposing the CBA harmonized method

CBA - Aspects which usually are not monetarized

- Ease in terms of implementation;
- Ease in terms of use;
- Reputation of railways;
- Effects on the environment;
- Customer satisfaction with the railway safety;
- Capacity performance;
- The possibilities of by-passing the system;
- Maturity degree of the technology

- Privacy issues regarding the collected data
- Effects on the surrounding / other stakeholders
- Availability of the solution (used components)
- Certification procedures (necessary delays, etc.)
- Impact on the LC operation (closing duration, etc.)
- Acceptability by users.

CBA - Specific relevant aspects (1)

- Life cost as a factor in the CBA
 - Value of Preventing a Casualty (VPC) is composed of [ERA 2015]:
 - 1) Value of safety per se: Willingness to Pay (WTP) values based on stated preference studie carried out in the Member State for which they are applied.
 - 2) Direct and indirect economic costs: cost values appraised in the Member State, composed of:
 - - medical and rehabilitation costs,
 - legal court cost, cost for police, private crash investigations, emergency service and administrative costs of insurance,
 - production losses: value to society of goods and services that could have been produced by the person if the accident had not occurred.

Country	Fatality	Severe injury	Slight injury
Austria	2,395,000	327,000	25,800
Belgium	2,178,000	330,400	21,300
Bulgaria	984,000	127,900	9,800

Examples of data

→ Country specific value vs. EU averaged value?

CBA - Specific relevant aspects (2)

Values of time for estimating cost of delays

- EC Directive 2009/149/EC estimates delay costs for an accident based on the information of its real duration as follows:
- VT = monetary value of travel time savings
- Value of time for a passenger of a train (an hour):
- VTP = [VT of work passengers]*[Average percentage of work passengers per year] + [VT of non-work passengers]*[Average percentage of non-work passengers per year]
- VT measured in € per passenger per hour
- Value of time for a freight train (an hour)
- VTF = [VT of freight trains]*[(Tonne-Km)/(Freight Train-Km)]
- VT is measured in € per freight tonne per hour
- Average number of tonnes of goods carried per train in one year = (Tonne-Km)/(Freight Train-Km)
- CM = Cost of 1 minute of delay of a train

CBA - Specific relevant aspects (3)

Values of time for estimating cost of delays

- Passenger train: CMP = K1*(VTP/60)*[(Passenger-Km)/(Passenger Train-Km)]
- Average number of passengers per train in one year = (Passenger-Km)/(Passenger Train-Km)
- Freight train: CMF = K2* (VTF/60)
- Factors K1 and K2 are between the value of time and the value of delay, as estimated by
- stated preference studies, to take into account the fact that the time lost as a result of delays is
- perceived significantly more negative than normal travel time.
- Cost of delays upon the occurrence of an accident = CMP*(Minutes of delay of passenger trains) +
- CMF* (Minutes of delay of freight trains)

CBA - Specific relevant aspects (4)

Values of time for estimating cost of delays

Work passenger trips – VT (2002 in € per passenger per hour)

Country	Work	
Austria	28.40	
Belgium	27.44	
Cyprus	21.08	
Czech Republic	14.27	
Denmark	31.54	Examples of data
Estonia	12.82	ordata
Finland	28.15	
France	27.70	
Germany	27.86	
Greece	19.42	

Table 4: Freight trips VT (2002 in € per freight tonne per hour)

	Per tonne of freight carried			
Country	Road	Rail		
Austria	3.37	1.38		
Belgium	3.29	1.35		
Cyprus	2.73	1.12		
Czech Republic	2.06	0.84		
Denmark	3.63	1.49		
Estonia	1.90	0.78		
Finland	3.34	1.37		
France	3.32	1.36		
Germany	3.34	1.37		
Greece	2.55	1.05		

CBA - Specific relevant aspects (5)

Cost of damages to environment

Main cases:

- Pollution of an area by liquid, solid or gas release of goods.
- Material damages to an area (e.g. trees pulled down by rolling stock in motion)
- Fires in an area inside or outside the railway premises (e.g. fires of trees caused by rolling stock in motion).

Country	Value (in 2008)
Austria	45.71
Belgium	43.55
Bulgaria	6.20
Channel Tunnel	40.04
Czech Republic	19.96
Germany	40.58
Denmark	57.71
Estonia	16.45

Developing Business models for the SAFER-LC solutions

Business Model Techniques

37 different Business Model techniques have been identified

Which ones can present SAFER-LC's BM??

Collaboration continuation after project-life?

Benefited from the solution as end-users?

Targeted Market

Global (7 responses)

Regional, national or European

National

Continental. In the global number of level crossings (LC). In France we have 15 000 LC

At each country a potential market is amount of locomotives and rail equipment which drive rail sections where level crossings are.

Main beneficiaries

Weighed results of main beneficiaries

Main stakeholders for implementation

Weighed results of main stakeholders for implementation

Distribution channel(s) used to sell the

The partners need to define the distributions channels that will be used to sell the solutions

Characteristics of SAFER-LC solutions

- SAFER-LC solutions could be provided as public goods
 - Difficult to introduce the solutions as commercial products as the free riders' problem cannot be avoided and the positive externalities created for the society
- SAFER-LC market is characterised by few but big potential customers
- There is no direct competition same products
- High ROI (return on investment) at the majority of the solutions (CBA)

Proposed Business Model for SAFER-LC

General recommendations

SAFER-LC recommendations (M36)

Goal: Issue general recommendations regarding various aspects

- Technical specifications on the light of the project findings: LC configurations and setups, railway/road operation rules, etc.
- Implementation of the proposed solutions:
 - human processes
 - organizational framework
 - legal framework
- Best practices to secure LCs according to the LC configuration, operational context and potential hazards
- Derive a comparative analysis of the communication standards to issue a set of technical recommendations
 - Adequacy to the communication needs of the developed solutions
 - Ensure interoperability in terms of data exchange
 - Provide necessary input for standardization bodies, such as CEN and ETSI, which are defining communication and application environments for C-ITS.

Thank you!

