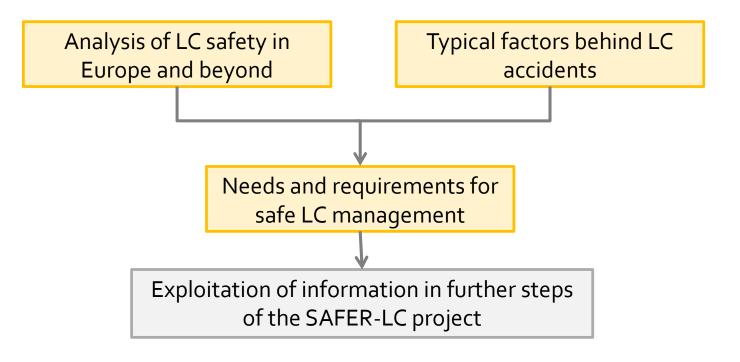


LCs in Europe and beyond: Rail and road safety management requirements

Anne Silla, VTT



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement No 723205

Overall objective

- ▲ To collect and produce information
 - ▲ To identify needs and requirements for improving level crossing (LC) safety
 - To define selected scenarios to be tested and evaluated

Analysis of LC safety in Europe and beyond

▲ Objective: To identify differences in LC environments

Method

- ▲ A questionnaire (*Country Information Collection Form*) designed to collect information on different aspects of LC safety
- Data collection: project partners and UIC collaborators

▲ Information was received from twenty-four countries

- Partner countries (n=8): Belgium, Finland, France, Greece, Italy, Norway, Spain, Turkey
- Other European countries (n=15): Albania, Austria, Ireland, Latvia, Lithuania, Macedonia, Montenegro, Netherlands, Romania, Russia, Serbia, Slovak Republic, Sweden, Switzerland, United Kingdom
- Beyond (n=1): Canada

Main results (1/2)

- ▲ LC safety arrangements: Do not differ greatly; a common trend to increase active (automatic) forms of protection
- Decisions are made based on a combined set of criteria: Volume of road and rail traffic, and maximum train speed; Local circumstances
- Additional safety arrangement: Physical and technological measures with cameras, rubber panels and warning lights; Public awareness and educational measures
- LC safety policy: LC removal as primary policy, followed by improved protection

Main results (2/2)

- LC legislation: A greater level of harmonisation with road side rules than those applied specifically to the operation and management of LCs
- Division of responsibilities: Main responsibility is held by the rail infrastructure manager; Need to balance the interest of different parties involved
- ▲ User requirements: Strong focus on education and awareness raising actions; Research-based action
- Best practices on LC safety: Twenty case studies and/or project results were reported

Typical factors behind LC accidents

▲ Objective: To produce an in-depth review of LC accident data

- Method
 - ▲ The review covered railway accident databases from seven countries, namely Greece, Finland, France, Italy, Norway, Spain and Turkey
 - The involved partners were responsible for collecting the data from relevant sources in their country
 - ▲ The main data sources were accident investigation reports from railway operators and national accident investigation bodies

	Title	Variable	Country						
	Title		Greece	Finland	France	Italy	Norway	Spain	Turkey
	Collision	Outcome	Х	Х	Х	Х	X	X	X
		Type of road vehicle	Х	Х	Х	Х	Х	Х	Х
		Month	Х	Х	Х	Х	Х	Х	Х
by country		Day of the week	Х	Х	Х	Х	Х	Х	Х
		Hour	Х	Х	Х	Х	Х	Х	Х
		Year	Х	Х	Х	Х	Х	Х	Х
	Victim	Type of victim	Х	Х	Х	Х	Х	Х	Х
n few cases		Type of road user	Х	Х	Х	Х	NA	NA	Х
		Outcome	Х	Х	Х	Х	Х	NA	Х
		Gender	(X)	Х	Х	(X)	NA	NA	Х
		Age	NA	Х	Х	Х	NA	NA	Х
		Intentionality	(X)	Х	NA	Х	Х	NA	Х
		Involvement in secondary tasks	NA	Х	NA	Х	NA	NA	Х
		Intoxication	(X)	Х	(X)	(X)	NA	NA	(X)
	Road environment	Road traffic volume (AADT)	Х	Х	Х	Х	Х	NA	Х
		Type of road	Х	Х	Х	Х	Х	Х	Х
		Road speed limit	Х	Х	Х	Х	Х	NA	Х
		Number of lanes per direction	Х	Х	NA	Х	Х	NA	Х
		Type or road surface	Х	Х	NA	Х	Х	Х	Х
		Existence of level crossing sign before LC	Х	Х	NA	Х	Х	(X)	Х
		Inclination	Х	Х	NA	Х	Х	NĂ	Х
		Crossing angle (between road and track)	Х	Х	Х	Х	Х	NA	Х
	Railway environment	Daily train volume (passenger + freight)	Х	Х	Х	Х	Х	Х	Х
		Speed limit for person trains (km/h)	Х	Х	Х	Х	Х	NA	Х
		Speed limit for freight trains (km/h)	Х	Х	Х	Х	Х	NA	Х
		Condition of wait platform	Х	Х	NA	Х	NA	Х	Х
		Number of tracks	Х	Х	Х	Х	Х	Х	Х
	LC characteristics	Type of LC	Х	Х	Х	Х	Х	Х	Х
		Location of LC	Х	NA	Х	Х	Х	Х	Х
		Sight distances (from the road)	NA	Х	NA	Х	Х	NA	Х
	Circumstances	Weather	(X)	Х	(X)	Х	NA	NA	Х
		Lighting conditions	(X)	Х	NA	Х	NA	NA	Х
	Train	Train	Х	NA	NA	Х	Х	(X)	Х
	Effect	Delay (number of minutes)	(X)	NA	NA	X	NA	NA	X
		Delay (number of trains cancelled)	NA	NA	NA	NA	NA	NA	X
		Costs (euros)	NA	NA	NA	X	NA	NA	X
	Main factors affecting	X	NA	X	× ×	X	NA	X	

Available variables by country x = Available, (x) = Available only in few cases

NA = Not available

Main findings – LC accidents

- ▲ Fairly evenly distributed throughout the year and all days of the week
- ▲ Victims: usually car drivers or pedestrians, and typically local inhabitants
- ▲ A large share occurred in areas where the road speed limit was rather low
- Some main factors contributing to LC accidents were breakdown of the car at the LC, car violating the barriers, non-observation of road signage, distraction, and limited visibility due to glare from the sun
- ▲ Analysis highlighted the differences between railway environments
 - High share of LC accidents at active LCs in Italy (92%), France (86%) and Greece (73%)
 - France: 24% of accidents occur at LCs where road traffic volume is higher than 5 000 road vehicles per day

Conclusions

- The coverage of victim details varied between countries and in several cases they are missing
- The exploitation of in-depth LC accident data is not possible if the data is not available to the interested organisations
- ▲ The yearly number of fatalities and serious injuries did not perfectly match with the number of cases reported to the ERA database

EUROPEAN ERAIL AURION ERAIL AGENCY European Railway Accident Information Links				https://erail.era.europa.eu/safety-indicators.aspx						
Home Inve	estigations	Recommend	ations Safe	ty Indicators	Support	About				
og in Common Safety Indicato					ors					Ctrl+click to select or deselect
		-	Advanced search							
			Country	Bel	stria gium garia		Year	2020 2019 2018	¢	Search

Needs and requirements for safe LC management

Objective: To produce a list of needs and requirements which should be satisfied by LCs both during normal operations and degraded modes

Method

- Literature review
- ▲ In-depth interviews with experts
- Workshop on end-user requirements. Around 40 questionnaires were collected.

SAFER-LC Final conference, 22 April 2020

Main findings

▲ Legal, organizational and technical requirements: International cooperation; Need of a harmonized accident database

Identified risks

- ▲ Human factors: distraction, inattentiveness, speeding, rule violation
- ▲ LC: location, profile, visibility
- A Railway operation: vehicle stuck, long closure time, failures
- Innovative solutions: Inform road users, risk monitoring, object recognition, predictive maintenance
- ▲ List of scenarios to be further developed later in the project

Main outputs

▲ Information on LC safety in different countries

- ▲ More insights into LC accidents, and risks at LCs
- ▲ Information on best practices, and (innovative) safety solutions
- > Input for further development of scenarios
- > Input for the estimation of safety potential of piloted measures

Main reports

▲ Reports are online at <u>https://safer-lc.eu/</u>

▲ D1.1: Analysis of level crossing safety in Europe and beyond

- D1.2: Level crossing accidents and factors behind them
- ▲ <u>D1.3</u>: Needs and requirements for improving level crossing safety

Main contacts

Aida Herranz, FFE : <u>aherranz@ffe.es</u> for "LC safety in Europe and beyond"
Anne Silla, VTT : <u>anne.silla@vtt.fi</u> for "Typical factors behind LC accidents"
Marie-Hélène Bonneau, UIC : <u>bonneau@uic.org</u> for "Needs and requirements"

Thank you for your attention!

SAFER-LC Final conference, 22 April 2020